HOHF Theory
The logical framework of proofgold is intuitionistic higher-order
logic. Different theories (declaring
typed constructors and axioms) can be included on top of this
framework. Proofgold builds in a (classical) higher-order theory of
hereditarily finite sets (HOHF). The reward bounty propositions
until Block 5000 were
all conjectures relative to this specific theory.
The details of this theory can be printed with the command:
theory 6ffc9680fbe00a58d70cdeb319f11205ed998131ce51bb96f16c7904faf74a3d
The implementation is in the file checking.ml.
Here we give a high level description.
The types consist of Prop (which we abbreviate as o below),
one base type we call ι
and all function types constructed from these.
Two axioms (double negation and propositional extensionality)
will imply o has (only) two elements (True and False).
Constructors and axioms will imply ι consists of the
hereditarily finite sets, and hereditarily finite sets
will give the only standard model of the theory.
Primitive Typed Constructors
There are 104 primitive constructors, but 98
of these have a meaning determined by a definitional axiom.
The only primitives for which there is no definitional axiom
are: 0 [Eps_i] (a choice function), 7 [In] (set membership),
9 [Empty] (the empty set), 10 [Union] (union operator), 11 [Power] (power set operator)
and 12 [Repl] (replacement set operator).
- 0 [Eps_i] : (ι → o) → ι
- 1 [False] : o
- 2 [True] : o
- 3 [not] : o → o
- 4 [and] : o → o → o
- 5 [or] : o → o → o
- 6 [iff] : o → o → o
- 7 [In] : ι → ι → o
- 8 [Subq] : ι → ι → o
- 9 [Empty] : ι
- 10 [Union] : ι → ι
- 11 [Power] : ι → ι
- 12 [Repl] : ι → (ι → ι) → ι
- 13 [TransSet] : ι → o
- 14 [atleast2] : ι → o
- 15 [atleast3] : ι → o
- 16 [atleast4] : ι → o
- 17 [atleast5] : ι → o
- 18 [atleast6] : ι → o
- 19 [exactly2] : ι → o
- 20 [exactly3] : ι → o
- 21 [exactly4] : ι → o
- 22 [exactly5] : ι → o
- 23 [exu_i] : (ι → o) → o
- 24 [reflexive_i] : (ι → ι → o) → o
- 25 [irreflexive_i] : (ι → ι → o) → o
- 26 [symmetric_i] : (ι → ι → o) → o
- 27 [antisymmetric_i] : (ι → ι → o) → o
- 28 [transitive_i] : (ι → ι → o) → o
- 29 [eqreln_i] : (ι → ι → o) → o
- 30 [per_i] : (ι → ι → o) → o
- 31 [linear_i] : (ι → ι → o) → o
- 32 [trichotomous_or_i] : (ι → ι → o) → o
- 33 [partialorder_i] : (ι → ι → o) → o
- 34 [totalorder_i] : (ι → ι → o) → o
- 35 [strictpartialorder_i] : (ι → ι → o) → o
- 36 [stricttotalorder_i] : (ι → ι → o) → o
- 37 [If_i] : o → ι → ι → ι
- 38 [exactly1of2] : o → o → o
- 39 [exactly1of3] : o → o → o → o
- 40 [nIn] : ι → ι → o
- 41 [nSubq] : ι → ι → o
- 42 [UPair] : ι → ι → ι
- 43 [Sing] : ι → ι
- 44 [binunion] : ι → ι → ι
- 45 [SetAdjoin] : ι → ι → ι
- 46 [famunion] : ι → (ι → ι) → ι
- 47 [Sep] : ι → (ι → o) → ι
- 48 [ReplSep] : ι → (ι → o) → (ι → ι) → ι
- 49 [binintersect] : ι → ι → ι
- 50 [setminus] : ι → ι → ι
- 51 [inj] : ι → ι → (ι → ι) → o
- 52 [bij] : ι → ι → (ι → ι) → o
- 53 [atleastp] : ι → ι → o
- 54 [equip] : ι → ι → o
- 55 [In_rec_poly_G_i] : (ι → (ι → ι) → ι) → ι → ι → o
- 56 [In_rec_poly_i] : (ι → (ι → ι) → ι) → ι → ι
- 57 [ordsucc] : ι → ι
- 58 [nat_p] : ι → o
- 59 [nat_primrec] : ι → (ι → ι → ι) → ι → ι
- 60 [add_nat] : ι → ι → ι
- 61 [mul_nat] : ι → ι → ι
- 62 [ordinal] : ι → o
- 63 [V_] : ι → ι
- 64 [Inj1] : ι → ι
- 65 [Inj0] : ι → ι
- 66 [Unj] : ι → ι
- 67 [combine_funcs] : ι → ι → (ι → ι) → (ι → ι) → ι → ι
- 68 [setsum] : ι → ι → ι
- 69 [proj0] : ι → ι
- 70 [proj1] : ι → ι
- 71 [binrep] : ι → ι → ι
- 72 [lam] : ι → (ι → ι) → ι
- 73 [setprod] : ι → ι → ι
- 74 [ap] : ι → ι → ι
- 75 [setsum_p] : ι → o
- 76 [tuple_p] : ι → ι → o
- 77 [Pi] : ι → (ι → ι) → ι
- 78 [setexp] : ι → ι → ι
- 79 [Sep2] : ι → (ι → ι) → (ι → ι → o) → ι
- 80 [set_of_pairs] : ι → o
- 81 [lam2] : ι → (ι → ι) → (ι → ι → ι) → ι
- 82 [PNoEq_] : ι → (ι → o) → (ι → o) → o
- 83 [PNoLt_] : ι → (ι → o) → (ι → o) → o
- 84 [PNoLt] : ι → (ι → o) → ι → (ι → o) → o
- 85 [PNoLe] : ι → (ι → o) → ι → (ι → o) → o
- 86 [PNo_downc] : (ι → (ι → o) → o) → ι → (ι → o) → o
- 87 [PNo_upc] : (ι → (ι → o) → o) → ι → (ι → o) → o
- 88 [SNoElts_] : ι → ι
- 89 [SNo_] : ι → ι → o
- 90 [PSNo] : ι → (ι → o) → ι
- 91 [SNo] : ι → o
- 92 [SNoLev] : ι → ι
- 93 [SNoEq_] : ι → ι → ι → o
- 94 [SNoLt] : ι → ι → o
- 95 [SNoLe] : ι → ι → o
- 96 [binop_on] : ι → (ι → ι → ι) → o
- 97 [Loop] : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι → o
- 98 [Loop_with_defs] : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → ι
→ (ι → ι → ι) → (ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι → ι) → (ι → ι
→ ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → o
- 99 [Loop_with_defs_cex1] : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι →
ι) → ι → (ι → ι → ι) → (ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι → ι) →
(ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι)
→ o
- 100 [Loop_with_defs_cex2] : ι → (ι → ι → ι) → (ι → ι → ι) → (ι → ι →
ι) → ι → (ι → ι → ι) → (ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι → ι) →
(ι → ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι) → (ι → ι → ι)
→ o
- 101 [combinator] : ι → o
- 102 [combinator_equiv] : ι → ι → o
- 103 [equip_mod] : ι → ι → ι → o
Axioms
There are 108 axioms. The first 10 are proper axioms
and the remaining are definitional axioms.
- Axiom 0 [Choice]: (∀ X0:ι → o . (∀ X1 . ((X0 X1) → (X0 (Eps_i X0)))))
- Axiom 1 [Double Negation]: (∀ X0:o . ((not (not X0)) → X0))
- Axiom 2 [Propositional Extensionality]: (∀ X0:o . (∀ X1:o . ((iff X0 X1) → (X0 = X1))))
- Axiom 3 [Set Extensionality]: (∀ X0 . (∀ X1 . ((Subq X0 X1) → ((Subq X1 X0) → (X0 = X1)))))
- Axiom 4 [Empty Set Axiom]: (not (∃ X0 . (In X0 Empty)))
- Axiom 5 [Union Axiom]: (∀ X0 . (∀ X1 . (iff (In X1 (Union X0)) (∃ X2 . (and (In X1 X2) (In X2 X0))))))
- Axiom 6 [Power Set Axiom]: (∀ X0 . (∀ X1 . (iff (In X1 (Power X0)) (Subq X1 X0))))
- Axiom 7 [Replacement Axiom]: (∀ X0 . (∀ X1:ι → ι . (∀ X2 . (iff (In
X2 (Repl X0 (λ X3 . (X1 X3)))) (∃ X3 . (and (In X3 X0) (X2 = (X1
X3))))))))
- Axiom 8 [Hereditarily Finite Induction Axiom]: (∀ X0:ι → o . ((∀ X1 .
((X0 X1) → (∀ X2 . ((In X2 X1) → (X0 X2))))) → ((X0 Empty) → ((∀ X1 .
((X0 X1) → (X0 (Union X1)))) → ((∀ X1 . ((X0 X1) → (X0 (Power X1)))) →
((∀ X1 . ((X0 X1) → (∀ X2:ι → ι . ((∀ X3 . ((In X3 X1) → (X0 (X2 X3)))) →
(X0 (Repl X1 (λ X3 . (X2 X3)))))))) → (∀ X1 . (X0 X1))))))))
- Axiom 9 [Epsilon Induction Axiom]: (∀ X0:ι → o . ((∀ X1 . ((∀ X2 . ((In X2 X1) → (X0 X2))) → (X0 X1))) → (∀ X1 . (X0 X1))))
- Axiom 10 [False Definition]: (False = (∀ X0:o . X0))
- Axiom 11 [True Definition]: (True = (∀ X0:o . (X0 → X0)))
- Axiom 12 [not Definition]: (not = (λ X0 . (X0 → False)))
- Axiom 13 [and Definition]: (and = (λ X0 . (λ X1 . (∀ X2:o . ((X0 → (X1 → X2)) → X2)))))
- Axiom 14 [or Definition]: (or = (λ X0 . (λ X1 . (∀ X2:o . ((X0 → X2) → ((X1 → X2) → X2))))))
- Axiom 15 [iff Definition]: (iff = (λ X0 . (λ X1 . (and (X0 → X1) (X1 → X0)))))
- Axiom 16 [Subq Definition]: (Subq = (λ X0 . (λ X1 . (∀ X2 . ((In X2 X0) → (In X2 X1))))))
- Axiom 17 [TransSet Definition]: (TransSet = (λ X0 . (∀ X1 . ((In X1 X0) → (Subq X1 X0)))))
- Axiom 18 [atleast2 Definition]: (atleast2 = (λ X0 . (∃ X1 . (and (In X1 X0) (not (Subq X0 (Power X1)))))))
- Axiom 19 [atleast3 Definition]: (atleast3 = (λ X0 . (∃ X1 . (and (Subq X1 X0) (and (not (Subq X0 X1)) (atleast2 X1))))))
- Axiom 20 [atleast4 Definition]: (atleast4 = (λ X0 . (∃ X1 . (and (Subq X1 X0) (and (not (Subq X0 X1)) (atleast3 X1))))))
- Axiom 21 [atleast5 Definition]: (atleast5 = (λ X0 . (∃ X1 . (and (Subq X1 X0) (and (not (Subq X0 X1)) (atleast4 X1))))))
- Axiom 22 [atleast6 Definition]: (atleast6 = (λ X0 . (∃ X1 . (and (Subq X1 X0) (and (not (Subq X0 X1)) (atleast5 X1))))))
- Axiom 23 [exactly2 Definition]: (exactly2 = (λ X0 . (and (atleast2 X0) (not (atleast3 X0)))))
- Axiom 24 [exactly3 Definition]: (exactly3 = (λ X0 . (and (atleast3 X0) (not (atleast4 X0)))))
- Axiom 25 [exactly4 Definition]: (exactly4 = (λ X0 . (and (atleast4 X0) (not (atleast5 X0)))))
- Axiom 26 [exactly5 Definition]: (exactly5 = (λ X0 . (and (atleast5 X0) (not (atleast6 X0)))))
- Axiom 27 [exu_i Definition]: (exu_i = (λ X0 . (and (∃ X1 . (X0 X1)) (∀ X1 . (∀ X2 . ((X0 X1) → ((X0 X2) → (X1 = X2))))))))
- Axiom 28 [reflexive_i Definition]: (reflexive_i = (λ X0 . (∀ X1 . (X0 X1 X1))))
- Axiom 29 [irreflexive_i Definition]: (irreflexive_i = (λ X0 . (∀ X1 . (not (X0 X1 X1)))))
- Axiom 30 [symmetric_i Definition]: (symmetric_i = (λ X0 . (∀ X1 . (∀ X2 . ((X0 X1 X2) → (X0 X2 X1))))))
- Axiom 31 [antisymmetric_i Definition]: (antisymmetric_i = (λ X0 . (∀ X1 . (∀ X2 . ((X0 X1 X2) → ((X0 X2 X1) → (X1 = X2)))))))
- Axiom 32 [transitive_i Definition]: (transitive_i = (λ X0 . (∀ X1 .
(∀ X2 . (∀ X3 . ((X0 X1 X2) → ((X0 X2 X3) → (X0 X1 X3))))))))
- Axiom 33 [eqreln_i Definition]: (eqreln_i = (λ X0 . (and (and (reflexive_i X0) (symmetric_i X0)) (transitive_i X0))))
- Axiom 34 [per_i Definition]: (per_i = (λ X0 . (and (symmetric_i X0) (transitive_i X0))))
- Axiom 35 [linear_i Definition]: (linear_i = (λ X0 . (∀ X1 . (∀ X2 . (or (X0 X1 X2) (X0 X2 X1))))))
- Axiom 36 [trichotomous_or_i Definition]: (trichotomous_or_i = (λ X0 .
(∀ X1 . (∀ X2 . (or (or (X0 X1 X2) (X1 = X2)) (X0 X2 X1))))))
- Axiom 37 [partialorder_i Definition]: (partialorder_i = (λ X0 . (and
(and (reflexive_i X0) (antisymmetric_i X0)) (transitive_i X0))))
- Axiom 38 [totalorder_i Definition]: (totalorder_i = (λ X0 . (and (partialorder_i X0) (linear_i X0))))
- Axiom 39 [strictpartialorder_i Definition]: (strictpartialorder_i = (λ X0 . (and (irreflexive_i X0) (transitive_i X0))))
- Axiom 40 [stricttotalorder_i Definition]: (stricttotalorder_i = (λ X0 . (and (strictpartialorder_i X0) (trichotomous_or_i X0))))
- Axiom 41 [If_i Definition]: (If_i = (λ X0 . (λ X1 . (λ X2 . (Eps_i
(λ X3 . (or (and X0 (X3 = X1)) (and (not X0) (X3 = X2)))))))))
- Axiom 42 [exactly1of2 Definition]: (exactly1of2 = (λ X0 . (λ X1 . (or (and X0 (not X1)) (and (not X0) X1)))))
- Axiom 43 [exactly1of3 Definition]: (exactly1of3 = (λ X0 . (λ X1 . (λ
X2 . (or (and (exactly1of2 X0 X1) (not X2)) (and (and (not X0) (not
X1)) X2))))))
- Axiom 44 [nIn Definition]: (nIn = (λ X0 . (λ X1 . (not (In X0 X1)))))
- Axiom 45 [nSubq Definition]: (nSubq = (λ X0 . (λ X1 . (not (Subq X0 X1)))))
- Axiom 46 [UPair Definition]: (UPair = (λ X0 . (λ X1 . (Repl (Power (Power Empty)) (λ X2 . (If_i (In Empty X2) X0 X1))))))
- Axiom 47 [Sing Definition]: (Sing = (λ X0 . (UPair X0 X0)))
- Axiom 48 [binunion Definition]: (binunion = (λ X0 . (λ X1 . (Union (UPair X0 X1)))))
- Axiom 49 [SetAdjoin Definition]: (SetAdjoin = (λ X0 . (λ X1 . (binunion X0 (Sing X1)))))
- Axiom 50 [famunion Definition]: (famunion = (λ X0 . (λ X1 . (Union (Repl X0 (λ X2 . (X1 X2)))))))
- Axiom 51 [Sep Definition]: (Sep = (λ X0 . (λ X1 . (If_i (∃ X2 . (and
(In X2 X0) (X1 X2))) (Repl X0 (λ X2 . ((λ X3 . (If_i (X1 X3) X3 (Eps_i
(λ X4 . (and (In X4 X0) (X1 X4)))))) X2))) Empty))))
- Axiom 52 [ReplSep Definition]: (ReplSep = (λ X0 . (λ X1 . (λ X2 . (Repl (Sep X0 (λ X3 . (X1 X3))) (λ X3 . (X2 X3)))))))
- Axiom 53 [binintersect Definition]: (binintersect = (λ X0 . (λ X1 . (Sep X0 (λ X2 . (In X2 X1))))))
- Axiom 54 [setminus Definition]: (setminus = (λ X0 . (λ X1 . (Sep X0 (λ X2 . (nIn X2 X1))))))
- Axiom 55 [inj Definition]: (inj = (λ X0 . (λ X1 . (λ X2 . (and (∀ X3
. ((In X3 X0) → (In (X2 X3) X1))) (∀ X3 . ((In X3 X0) → (∀ X4 . ((In X4
X0) → (((X2 X3) = (X2 X4)) → (X3 = X4)))))))))))
- Axiom 56 [bij Definition]: (bij = (λ X0 . (λ X1 . (λ X2 . (and (inj
X0 X1 X2) (∀ X3 . ((In X3 X1) → (∃ X4 . (and (In X4 X0) ((X2 X4) =
X3))))))))))
- Axiom 57 [atleastp Definition]: (atleastp = (λ X0 . (λ X1 . (∃ X2:ι → ι . (inj X0 X1 X2)))))
- Axiom 58 [equip Definition]: (equip = (λ X0 . (λ X1 . (∃ X2:ι → ι . (bij X0 X1 X2)))))
- Axiom 59 [In_rec_poly_G_i Definition]: (In_rec_poly_G_i = (λ X0 . (λ
X1 . (λ X2 . (∀ X3:ι → ι → o . ((∀ X4 . (∀ X5:ι → ι . ((∀ X6 . ((In X6
X4) → (X3 X6 (X5 X6)))) → (X3 X4 (X0 X4 X5))))) → (X3 X1 X2)))))))
- Axiom 60 [In_rec_poly_i Definition]: (In_rec_poly_i = (λ X0 . (λ X1 . (Eps_i (λ X2 . (In_rec_poly_G_i X0 X1 X2))))))
- Axiom 61 [ordsucc Definition]: (ordsucc = (λ X0 . (binunion X0 (Sing X0))))
- Axiom 62 [nat_p Definition]: (nat_p = (λ X0 . (∀ X1:ι → o . ((X1 Empty) → ((∀ X2 . ((X1 X2) → (X1 (ordsucc X2)))) → (X1 X0))))))
- Axiom 63 [nat_primrec Definition]: (nat_primrec = (λ X0 . (λ X1 .
(In_rec_poly_i (λ X2 . (λ X3 . (If_i (In (Union X2) X2) (X1 (Union X2)
(X3 (Union X2))) X0)))))))
- Axiom 64 [add_nat Definition]: (add_nat = (λ X0 . (λ X1 . (nat_primrec X0 (λ X2 . (λ X3 . (ordsucc X3))) X1))))
- Axiom 65 [mul_nat Definition]: (mul_nat = (λ X0 . (λ X1 . (nat_primrec Empty (λ X2 . (λ X3 . (add_nat X0 X3))) X1))))
- Axiom 66 [ordinal Definition]: (ordinal = (λ X0 . (and (TransSet X0) (∀ X1 . ((In X1 X0) → (TransSet X1))))))
- Axiom 67 [V_ Definition]: (V_ = (In_rec_poly_i (λ X0 . (λ X1 . (famunion X0 (λ X2 . (Power (X1 X2))))))))
- Axiom 68 [Inj1 Definition]: (Inj1 = (In_rec_poly_i (λ X0 . (λ X1 . (binunion (Sing Empty) (Repl X0 (λ X2 . (X1 X2))))))))
- Axiom 69 [Inj0 Definition]: (Inj0 = (λ X0 . (Repl X0 (λ X1 . (Inj1 X1)))))
- Axiom 70 [Unj Definition]: (Unj = (In_rec_poly_i (λ X0 . (λ X1 . (Repl (setminus X0 (Sing Empty)) (λ X2 . (X1 X2)))))))
- Axiom 71 [combine_funcs Definition]: (combine_funcs = (λ X0 . (λ X1 .
(λ X2 . (λ X3 . (λ X4 . (If_i (X4 = (Inj0 (Unj X4))) (X2 (Unj X4)) (X3
(Unj X4)))))))))
- Axiom 72 [setsum Definition]: (setsum = (λ X0 . (λ X1 . (binunion (Repl X0 (λ X2 . (Inj0 X2))) (Repl X1 (λ X2 . (Inj1 X2)))))))
- Axiom 73 [proj0 Definition]: (proj0 = (λ X0 . (ReplSep X0 (λ X1 . (∃ X2 . ((Inj0 X2) = X1))) (λ X1 . (Unj X1)))))
- Axiom 74 [proj1 Definition]: (proj1 = (λ X0 . (ReplSep X0 (λ X1 . (∃ X2 . ((Inj1 X2) = X1))) (λ X1 . (Unj X1)))))
- Axiom 75 [binrep Definition]: (binrep = (λ X0 . (λ X1 . (setsum X0 (Power X1)))))
- Axiom 76 [lam Definition]: (lam = (λ X0 . (λ X1 . (famunion X0 (λ X2 . (Repl (X1 X2) (λ X3 . (setsum X2 X3))))))))
- Axiom 77 [setprod Definition]: (setprod = (λ X0 . (λ X1 . (lam X0 (λ X2 . X1)))))
- Axiom 78 [ap Definition]: (ap = (λ X0 . (λ X1 . (ReplSep X0 (λ X2 . (∃ X3 . (X2 = (setsum X1 X3)))) (λ X2 . (proj1 X2))))))
- Axiom 79 [setsum_p Definition]: (setsum_p = (λ X0 . ((setsum (ap X0 Empty) (ap X0 (ordsucc Empty))) = X0)))
- Axiom 80 [tuple_p Definition]: (tuple_p = (λ X0 . (λ X1 . (∀ X2 .
((In X2 X1) → (∃ X3 . (and (In X3 X0) (∃ X4 . (X2 = (setsum X3
X4))))))))))
- Axiom 81 [Pi Definition]: (Pi = (λ X0 . (λ X1 . (Sep (Power (lam X0
(λ X2 . (Union (X1 X2))))) (λ X2 . (∀ X3 . ((In X3 X0) → (In (ap X2 X3)
(X1 X3)))))))))
- Axiom 82 [setexp Definition]: (setexp = (λ X0 . (λ X1 . (Pi X1 (λ X2 . X0)))))
- Axiom 83 [Sep2 Definition]: (Sep2 = (λ X0 . (λ X1 . (λ X2 . (Sep
(lam X0 (λ X3 . (X1 X3))) (λ X3 . (X2 (ap X3 Empty) (ap X3 (ordsucc
Empty)))))))))
- Axiom 84 [set_of_pairs Definition]: (set_of_pairs = (λ X0 . (∀ X1 .
((In X1 X0) → (∃ X2 . (∃ X3 . (X1 = (lam (ordsucc (ordsucc Empty)) (λ X4
. (If_i (X4 = Empty) X2 X3))))))))))
- Axiom 85 [lam2 Definition]: (lam2 = (λ X0 . (λ X1 . (λ X2 . (lam X0 (λ X3 . (lam (X1 X3) (λ X4 . (X2 X3 X4)))))))))
- Axiom 86 [PNoEq_ Definition]: (PNoEq_ = (λ X0 . (λ X1 . (λ X2 . (∀ X3 . ((In X3 X0) → (iff (X1 X3) (X2 X3))))))))
- Axiom 87 [PNoLt_ Definition]: (PNoLt_ = (λ X0 . (λ X1 . (λ X2 . (∃
X3 . (and (In X3 X0) (and (and (PNoEq_ X3 X1 X2) (not (X1 X3))) (X2
X3))))))))
- Axiom 88 [PNoLt Definition]: (PNoLt = (λ X0 . (λ X1 . (λ X2 . (λ X3 .
(or (or (PNoLt_ (binintersect X0 X2) X1 X3) (and (and (In X0 X2)
(PNoEq_ X0 X1 X3)) (X3 X0))) (and (and (In X2 X0) (PNoEq_ X2 X1 X3))
(not (X1 X2)))))))))
- Axiom 89 [PNoLe Definition]: (PNoLe = (λ X0 . (λ X1 . (λ X2 . (λ X3 .
(or (PNoLt X0 X1 X2 X3) (and (X0 = X2) (PNoEq_ X0 X1 X3))))))))
- Axiom 90 [PNo_downc Definition]: (PNo_downc = (λ X0 . (λ X1 . (λ X2 .
(∃ X3 . (and (ordinal X3) (∃ X4:ι → o . (and (X0 X3 X4) (PNoLe X1 X2 X3
X4)))))))))
- Axiom 91 [PNo_upc Definition]: (PNo_upc = (λ X0 . (λ X1 . (λ X2 . (∃
X3 . (and (ordinal X3) (∃ X4:ι → o . (and (X0 X3 X4) (PNoLe X3 X4 X1
X2)))))))))
- Axiom 92 [SNoElts_ Definition]: (SNoElts_ = (λ X0 . (binunion X0
(Repl X0 (λ X1 . ((λ X2 . (SetAdjoin X2 (Sing (ordsucc Empty))))
X1))))))
- Axiom 93 [SNo_ Definition]: (SNo_ = (λ X0 . (λ X1 . (and (Subq X1
(SNoElts_ X0)) (∀ X2 . ((In X2 X0) → (exactly1of2 (In ((λ X3 .
(SetAdjoin X3 (Sing (ordsucc Empty)))) X2) X1) (In X2 X1))))))))
- Axiom 94 [PSNo Definition]: (PSNo = (λ X0 . (λ X1 . (binunion (Sep
X0 (λ X2 . (X1 X2))) (ReplSep X0 (λ X2 . (not (X1 X2))) (λ X2 . ((λ X3 .
(SetAdjoin X3 (Sing (ordsucc Empty)))) X2)))))))
- Axiom 95 [SNo Definition]: (SNo = (λ X0 . (∃ X1 . (and (ordinal X1) (SNo_ X1 X0)))))
- Axiom 96 [SNoLev Definition]: (SNoLev = (λ X0 . (Eps_i (λ X1 . (and (ordinal X1) (SNo_ X1 X0))))))
- Axiom 97 [SNoEq_ Definition]: (SNoEq_ = (λ X0 . (λ X1 . (λ X2 . (PNoEq_ X0 (λ X3 . (In X3 X1)) (λ X3 . (In X3 X2)))))))
- Axiom 98 [SNoLt Definition]: (SNoLt = (λ X0 . (λ X1 . (PNoLt (SNoLev X0) (λ X2 . (In X2 X0)) (SNoLev X1) (λ X2 . (In X2 X1))))))
- Axiom 99 [SNoLe Definition]: (SNoLe = (λ X0 . (λ X1 . (PNoLe (SNoLev X0) (λ X2 . (In X2 X0)) (SNoLev X1) (λ X2 . (In X2 X1))))))
- Axiom 100 [binop_on Definition]: (binop_on = (λ X0 . (λ X1 . (∀ X2 .
((In X2 X0) → (∀ X3 . ((In X3 X0) → (In (X1 X2 X3) X0))))))))
- Axiom 101 [Loop Definition]: (Loop = (λ X0 . (λ X1 . (λ X2 . (λ X3 .
(λ X4 . (and (and (and (and (binop_on X0 X1) (binop_on X0 X2))
(binop_on X0 X3)) (∀ X5 . ((In X5 X0) → (and ((X1 X4 X5) = X5) ((X1 X5
X4) = X5))))) (∀ X5 . ((In X5 X0) → (∀ X6 . ((In X6 X0) → (and (and (and
((X2 X5 (X1 X5 X6)) = X6) ((X1 X5 (X2 X5 X6)) = X6)) ((X3 (X1 X5 X6)
X6) = X5)) ((X1 (X3 X5 X6) X6) = X5)))))))))))))
(Warning: The definition of Loop has a serious bug. The condition that the identity element is in the carrier is missing.)
- Axiom 102 [Loop_with_defs Definition]: (Loop_with_defs = (λ X0 . (λ
X1 . (λ X2 . (λ X3 . (λ X4 . (λ X5 . (λ X6 . (λ X7 . (λ X8 . (λ X9 . (λ
X10 . (λ X11 . (λ X12 . (λ X13 . (and (and (and (and (Loop X0 X1 X2 X3
X4) (∀ X14 . ((In X14 X0) → (∀ X15 . ((In X15 X0) → ((X5 X14 X15) = (X2
(X1 X15 X14) (X1 X14 X15)))))))) (∀ X14 . ((In X14 X0) → (∀ X15 . ((In
X15 X0) → (∀ X16 . ((In X16 X0) → ((X6 X14 X15 X16) = (X2 (X1 X14 (X1
X15 X16)) (X1 (X1 X14 X15) X16)))))))))) (∀ X14 . ((In X14 X0) → (∀ X15 .
((In X15 X0) → (and (and (and (and ((X7 X14 X15) = (X2 X14 (X1 X15
X14))) ((X10 X14 X15) = (X1 X14 (X1 X15 (X2 X14 X4))))) ((X11 X14 X15) =
(X1 (X1 (X3 X4 X14) X15) X14))) ((X12 X14 X15) = (X1 (X2 X14 X15) (X2
(X2 X14 X4) X4)))) ((X13 X14 X15) = (X1 (X3 X4 (X3 X4 X14)) (X3 X15
X14))))))))) (∀ X14 . ((In X14 X0) → (∀ X15 . ((In X15 X0) → (∀ X16 .
((In X16 X0) → (and ((X8 X14 X15 X16) = (X2 (X1 X15 X14) (X1 X15 (X1 X14
X16)))) ((X9 X14 X15 X16) = (X3 (X1 (X1 X16 X14) X15) (X1 X14
X15))))))))))))))))))))))))))
- Axiom 103 [Loop_with_defs_cex1 Definition]: (Loop_with_defs_cex1 =
(λ X0 . (λ X1 . (λ X2 . (λ X3 . (λ X4 . (λ X5 . (λ X6 . (λ X7 . (λ X8 .
(λ X9 . (λ X10 . (λ X11 . (λ X12 . (λ X13 . (and (Loop_with_defs X0 X1
X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13) (∃ X14 . (and (In X14 X0) (∃
X15 . (and (In X15 X0) (∃ X16 . (and (In X16 X0) (∃ X17 . (and (In X17
X0) (not ((X5 (X1 (X2 (X8 X15 X16 X14) X4) X14) X17) =
X4))))))))))))))))))))))))))
- Axiom 104 [Loop_with_defs_cex2 Definition]: (Loop_with_defs_cex2 =
(λ X0 . (λ X1 . (λ X2 . (λ X3 . (λ X4 . (λ X5 . (λ X6 . (λ X7 . (λ X8 .
(λ X9 . (λ X10 . (λ X11 . (λ X12 . (λ X13 . (and (Loop_with_defs X0 X1
X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13) (∃ X14 . (and (In X14 X0) (∃
X15 . (and (In X15 X0) (∃ X16 . (and (In X16 X0) (∃ X17 . (and (In X17
X0) (∃ X18 . (and (In X18 X0) (not ((X6 X18 (X1 (X3 X4 X14) (X9 X15 X16
X14)) X17) = X4))))))))))))))))))))))))))))
- Axiom 105 [combinator Definition]: (combinator = (λ X0 . (∀ X1:ι → o
. ((X1 (Inj0 Empty)) → ((X1 (Inj0 (Power Empty))) → ((∀ X2 . (∀ X3 .
((X1 X2) → ((X1 X3) → (X1 (Inj1 (setsum X2 X3))))))) → (X1 X0)))))))
- Axiom 106 [combinator_equiv Definition]: (combinator_equiv = (λ X0 .
(λ X1 . (∀ X2:ι → ι → o . ((λ X3 . (λ X4 . (λ X5 . ((per_i X2) → ((∀ X6
. ((combinator X6) → (X2 X6 X6))) → ((∀ X6 . (∀ X7 . (∀ X8 . (∀ X9 .
((combinator X6) → ((combinator X7) → ((combinator X8) → ((combinator
X9) → ((X2 X6 X8) → ((X2 X7 X9) → (X2 (X5 X6 X7) (X5 X8 X9)))))))))))) →
((∀ X6 . (∀ X7 . (X2 (X5 (X5 X3 X6) X7) X6))) → ((∀ X6 . (∀ X7 . (∀ X8 .
(X2 (X5 (X5 (X5 X4 X6) X7) X8) (X5 (X5 X6 X8) (X5 X7 X8)))))) → (X2 X0
X1))))))))) (Inj0 Empty) (Inj0 (Power Empty)) (λ X3 . (λ X4 . (Inj1
(setsum X3 X4)))))))))
- Axiom 107 [equip_mod Definition]: (equip_mod = (λ X0 . (λ X1 . (λ X2
. (∃ X3 . (∃ X4 . (or (and (equip (setsum X0 X3) X1) (equip (setprod X4
X3) X2)) (and (equip (setsum X1 X3) X0) (equip (setprod X4 X3)
X2)))))))))